En posant :
\begin{equation} {\bf D}_{{\overset{1}{\textbf{m}}}} = \left( {\begin{array}{*{20}c} {{\bf {d}}_{{\overset{1}{\textbf{m}}},1} } & 0 & 0 & 1 & 0 & 0 \\ 0 & \ddots & 0 & 0 & \ddots & 0 \\ 0 & 0 & {{\bf {d}}_{{\overset{1}{\textbf{m}}},M} } & 0 & 0 & 1 \\ \end{array}} \right) \text{~,~} {\bf {d}} = \left( {\begin{array}{*{20}c} {{\bf {d}}_1 } \\ \vdots \\ {{\bf {d}}_M } \\ \end{array}} \right) \text{ et } X = \left( {\begin{array}{*{20}c} {\psi_1 } \\ \vdots \\ {\psi_M } \\ {s_1 } \\ \vdots \\ {s_M } \\ \end{array}} \right) \end{equation} | (75) |
\begin{equation} X=({\bf D}_{\overset{1}{\textbf{m}}}^T {\bf {C_d}}^{-1}{\bf D}_{\overset{1}{\textbf{m}}})^{-1}{\bf D}_{\overset{1}{\textbf{m}}}^T {\bf {C_d}}^{-1}\textbf{d} \end{equation} | (76) |
kunos 2014-07-01